
CS 227, Handout #9Nayak

Job shop scheduling: Operations

• Task is to schedule a set of jobs subject to a set of constraints

• Each job has a process plan

– Consisting of operations needed to complete the job

– Each operation, i, has a processing time, pi
– Sequencing constraints between operations

• If operation i precedes operation j, denoted i → j, then

sti + pi ≤ stj
• Each job J has a ready time, rJ, and a deadline, dJ

– For each operation i of job J

 rJ ≤ sti
sti + pi ≤ dJ

CS 227, Handout #9Nayak

Job shop scheduling: Resources

• Operations need resources

– At most one operation may use a resource at any given time

• If operations i and j require the same resource, then

sti + pi ≤ stj or stj + pj ≤ sti

CS 227, Handout #9Nayak

Search framework

• View problem as that of establishing sequencing constraints
between pairs of operations that share a common resource

• For operations i and j that share a common resource

– Decision i → j leads to constraint
sti + pi ≤ stj

– Decision j → i leads to constraint
 stj + pj ≤ sti

• At the start and after each decision, compute the earliest (esti)
and latest (lsti) start time of each operation i

CS 227, Handout #9Nayak

Ordering of operations

• Case 1: If esti + pi ≤ lstj and estj + pj > lsti

• Case 2: If esti + pi > lstj and estj + pj ≤ lsti

• Case 3: If esti + pi > lstj and estj + pj > lsti

• Case 4: If esti + pi ≤ lstj and estj + pj ≤ lsti

CS 227, Handout #9Nayak

Search procedure

• Initialize start time bounds using bellman-ford on the distance
graph G resulting from the operations constraints

• Select an unsequenced pair of operations that require the same
resource, select a sequence, and propagate the constraint

– First select operations that satisfy Cases 1 or 2

– Select among pairs that satisfy Case 4 using the variable
and value ordering heuristic

– Backtrack if an inconsistency is detected

• Resulting distance graph contains negative cycles

• Operations that satisfy Case 3 are detected

CS 227, Handout #9Nayak

Variable and value ordering heuristics

• For unordered operations i, j that share a resource, define the
temporal slack:

– Slack(i → j) = lstj – (esti + pi)

– Slack(j → i) = lsti – (estj + pj)

• Overall slack of a decision is
– Min(Slack(i → j), Slack(j → i))

• Variable ordering heuristic: Pick the decision with the
minimum overall slack

• Value ordering heuristic:
– Select i → j if Slack(i → j) ≥ Slack(j → i)

– Select j → i otherwise

CS 227, Handout #9Nayak

Constraint propagation

• Adding decision i → j to the distance graph G corresponds to
adding and edge from j to i with weight – pi

• d0i and di0 can be computed

– Directly using bellman-ford

– Incrementally using constraint propagation

• Relaxing an edge from j to i can update distance to i

• If the distance to i is updated, then one needs to relax
every edge (i, k)

• Stop propagation if

– For some node i, esti > lsti or

– The original edge is successfully relaxed twice

